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AN OPTICALLY ACTIVE CYCLOOCTATETRAENE INCAPABLE OF RACEMIZATION

Leo A. Paquette* and Michael P. Trova

Evans Chemical Laboratories, The Ohio State University, Columbus, Chio 43210

Surmary: Cycloheptene-1,2~dicarboxylic anhydride has been transformed into the 1,4-
annulated cyclooctatetraene 1, which in turn was resolved via its diastereomeric endo-

bornyltriazolinedione Diels-Alder adducts; 1 did not racemize during 23 hours at 158°C.

The capability for ring inversion (RI) and bond shifting (BS) is fundamental to the
cyclooctatetraene (COT) ring system..l Extensive theoretical? and experimental investiga-

tions3

over many years attest to the significance of this phenomenon as it relates to our
understanding of 4n T electronic character. In recent years, proximal peripheral substi-
tution of the COT nucleus has emerged as a very powerful tool for evaluating the energe-

tics of RI and BS in [8lannulenes, especially in chiral examp1es.4 The heightened vicinal
steric perturbation reduces the ease of planarization within these carbocyclic frameworks

and permits isolation of bond shift isomers in enantiomerically pure form. 1,2,3-Tri-

methylcyclooctatetraene constitutes a repre-
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The present goal was the first synthesis
of a cyclooctatetraene incapable of racemiza-
tion. To construct a COT of this level of

conformational rigidity, it becomes impor-

tant to introduce structural features that
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not only prevent planarization of the [8]annulene core, but other possible racemization
schemes as well., These include transannular bonding with formation of bicyclol[3.3.01~

octadienediyl biradicals,’

pseudorotational flexing about the fluted perimeter, and any
other topological change leading to loss of optical activity.

Hydrocarbon 1 suggested itself as a suitable target because {ts pentamethylene
lToop was expected to preclude passage of the ethylenic fragment through its confines.
Furthermore, bond shifting is certain to engender a substantial increase in ring strain,
Also, the location of the methyl substituent, while necessary for disrupting Cq sym~
metry, also appeared to guarantee against the loss of enantiomeric purity via the
other imaginable mechanistic schemes.

Anhydride 3, the product of Diels-Alder addition of isoprene to 26 (dioxane,
170°C, 68 h, 71%), already contains all of the requisite carbon atoms. Conversion of 3
to sulfide 4 proceeded smoothly (78% overall). In preparation for Ramberg-Backlund re-
arrangement.7 4 was a-chlorinated and chemoselectively oxidized (45%)., Exposure of the
epimeric a=chloro sulfone mixture to potassium tert-butoxide in tetrahydrofuran at ~78°C
afforded 5 (61%).8

Because all attempts to dehydrogenate 5 uniformly met with failure,? advantage was
taken instead of the unexpected ease with which its isomerization to 6 occurs in the
presence of 48% hydrogen bromide at 20°C (86%). Once migration of the double bond was
achfeved, 1t became possible to brominate the allylic ring methylene position regiose-
lectively and to effect the desired dehydrobromination with sodium methoxide in tetra-
hydrofuran, The annulated cyclooctatetraene produced in this manner (34%) was directly
condensed with enantiomerically pure (-)-endo—bornyl-].2.4-tr1azo11nedione.1°

Partial separation of 7 from 8 was made possible by HPLC on a Waters Prep 500
instrument using peak shaving and recycling techniques. Diastereomeric excesses of 46%
and 50% were realized for the pair of urazoles (TH NMR analysis at 300 MHz).”’12
Whereas hydrolysis~oxidation of the less polar adduct, [algz -27.9° (c 0.94, CoHgOH),
gave 1 (88%) exhibiting [algo -33,7° (¢ 0.16, diglyme), comparable treatment of the more

polar urazole, (u]%? +14.1° (¢ 0.77, CoHgOH) furnished the enantiomeric [8lannulene,

[a]%o +29.0°% (¢ 0.21, diglyme). Their 'H NMR spectra [(300 MHz, CDC13) & 5.86 (s, 2 H),
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5,73 (s, 1 H), 5.62 (my 1 H), 5.58 (s, 1 H), 2.38-2,30 (m, 2 H)» 2,17-1,96 (m» 2 H),

1.93-1.82 (my 2 H), 1.80 (s, 3 H), 1.49-1.16 (m, 4 H)] were superimposable.

Two experiments were now
carried out simultaneously. A
solution of racemic 1 in diglyme-
dy4 was sealed into an NMR tube
to permit periodic spectral scru-
tiny. A second solution of op-
tically active 1 in diglyme was
prepared to monitor any change in
{adp with time. Following the
sequential heating of these solu-
tions at 74.6°C (126 h), 83.2°C
(36 h), and 94.6°C (24 h), no
measurable change was noted by
either criterion., An increase in
temperature to 158°C (22.3 h)
promoted a 7% drop in optical ac-
tivity, corresponding strictly to
a comparable level of decomposi-
tion to unidentified by-products.

Thus, dynamic conformational
behavior must be severely cur-
tailed in 1. This previously
unobserved phenomenon preserves

the homochiral nature of {ts

enantiomers until the onset of

thermally {induced destruction (perhaps by air oxidation).
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3CH,=C(CH3)CH=CH,, dioxane, hydroguinone, 170°C, 68
h. PLIATH,, THF. CCH3S0,C1. pys 0%. INayS, HMPA,
130°C, 20 h. °NCS, CC1,, reflux, 1 h. Monoper-
phthalic acid, ether, -78° + 0°C. 9KOtBu, THF,

-78° > 0°c, M48% HBr, EtOAc, RT, 4 h.  'NBS, AIBN,
CClys reflux 10 min. JINaOCH3, THF, RT, 3 days.
k(-)-endb-borny’ltr1azo'l1ned1one. EtOAc, RT, 3 days.
NaOH, (CH3),CHOH, 75-80°C, 36 h; NH,OH; MnO,, ether.

We view 1 as an extreme case.

The question of whether less stringent architectural features might permit the con-

trolled racemization of [8lannulenes is currently under active s'cudy.]3
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